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1. Introduction and Background
Suppose P (X) denotes the class of all subsets of a metric space X. Define

Pp(X) =
{
A ⊆ X : A ̸= ∅ has a property p

}
.

Thus Pbd(X), Pcl(X), Pcp(X) and Pcl,bd(X) denote the classes of bounded, closed, com-
pact and closed bounded subsets of X, respectively.

Let F,G : X −→ P (X) be multi-valued mappings. A point x ∈ X is said to be :
(i): a fixed point of F if x ∈ Fx.
(ii): an strict fixed point of F if F (x) = {x}.
(iii): a common strict fixed point for pair (F,G) if Fx = Gx = {x}.

Denote Fix(F ), End(F ), Fix(F,G), End(F,G), the set of all fixed points of F , set of
all endpoints of F , set of all common fixed points of (F,G) and set of all common endpoints
of (F,G), respectively. Obviously, End(F ) ⊆ Fix(F ) and End(F,G) ⊆ Fix(F,G).

For A,B ∈ Pcl,bd(X), the Hausdorff distance H(A,B) between A and B induced by a
metric d on X is given by

(1.1) H(A,B) := max
{
sup
x∈B

d(x,A), sup
x∈A

d(x,B)
}
,

where d(x,A) = inf{d(x, a) : a ∈ A} is the distance of the point x from the set A.
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A mapping F : X → Pcl,bd(X) is said to be a contraction if for some 0 ≤ α < 1, the
cndition
(1.2) H(Fx, Fy) ≤ αd(x, y),

holds for all x, y ∈ X.
Banach contraction principle [2] was extended to multi-valued mappings by Nadler [23]

in the following theorem.

Theorem 1.1. Let (X, d) be a complete metric space and F : X → Pcl,bd(X) be a
contraction mapping Then there exists a point x ∈ X such that x ∈ Fx.

The study of fixed points for multi-valued contractions and non-expansive mappings
using the Hausdorff metric was initiated by Markin [19]. Later, an interesting and rich
fixed point theory for such maps was developed (see [12, 20, 21, 26, 27, 34, 35, 36, 38,
39, 41, 18, 31]). The theory of multi valued maps has application in control theory,
convex optimization, differential equations and economics. Recently many authors have
studied the existence and uniqueness of endpoints of multi-valued mappings (see, for
example [32, 22, 37] and the references therein). In this paper, we obtain a necessary and
sufficient condition for the existence of a common strict fixed point for a pair of multi-
valued mappings. As an application, we obtain some common fixed point result for a
hybrid pair of mappings. Our results extend the results in [15] and [37].

2. Main Results
The following definition play a crucial role throughout this work.

Definition 2.1. Let F,G : X → Pcl,bd(X) be multi-valued mappings, T : X → X
be a single valued mapping and K be a nonempty closed subset of X . A pair (F,G
) is said to have the common T− approximate strict fixed point property on K (see [16,
Definition 2.1]), if there exists a sequence {xn} ⊂ K such that
(2.1) lim

n→∞
H({Txn}, TFxn) = 0, lim

n→∞
H({Txn}, TGxn) = 0.

Definition 2.2. Let f, g : X → X be single valued mappings, T : X → X and K a
nonempty closed subset of X . A pair (f, g ) is said to have the common T− approximate
fixed point property on K, if there exists a sequence {xn} ⊂ K such that
(2.2) lim

n→∞
d(Txn, T fxn) = 0, lim

n→∞
H(Txn, T gxn) = 0.

Definition 2.3. Let F,G : X → Pcl,bd(X) be multi-valued mappings, and T : X → X.
A pair (F,G) is said to be T−Hardy-Rogers on X if there exist ai ≥ 0, i = 1, 2, ..., 5 with
5∑

i=1

ai < 1 such that for x,y in X, we have

(2.3) H(TFx, TGy) ≤ a1d(Tx, Ty) + a2D(Tx, TFx)
+a3D(Ty, TGy) + a4D(Tx, TGy) + a5D(Ty, TFx).

Definition 2.4. [17] A mapping T : X → X is said to be a closed graph mapping,
if for any sequence {xn} with lim

n→∞
Txn = a, there exists b ∈ X such that Tb = a. For

example, an identity function on X is a closed graph mapping.

Theorem 2.5. Let X be a complete metric space, T : X → X an injective and closed
graph mapping, K a nonempty, closed subset of X with T (K) ⊂ K and F,G : K →
Pcl,bd(K) be a T−Hardy-Rogers pair on K. Then (F,G) has a unique common strict fixed
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point on K, if and only if (F,G) has common T−approximate strict fixed point property
on K.

Proof. It is straightforward to check that if F and G have common strict fixed point, then
the pair (F,G) satisfies the common T−approximate strict fixed point property on K.
Conversely, suppose that the pair (F,G) has the common T−approximate strict fixed
point property on K. By assumption, there exists a sequence {xn} ⊂ K such that
limnH({Txn}, TFxn) = 0 and limnH({Txn}, TGxn) = 0. For all m,n ∈ N we have
(2.4)

d(Txn, Txm) ≤ H({Txn}, TFxn) +H(TFxn, TGxm) +H({Txm}, TGxm)
≤ H({Txn}, TFxn) +H({Txm}, TGxm) + a1d(Txn, Txm)

+a2D(Txn, TFxn) + a3D(Txm, TGxm) + a4D(Txn, TGxm)
+a5D(Txm, TFxn)

≤ H({Txn}, TFxn) +H({Txm}, TGxm) + a1d(Txn, Txm)
+a2H({Txn}, TFxn) + a3H({Txm}, TGxm)
+a4[d(Txn, Txm) +D(Txm, TGxm)]
+a5[d(Txn, Txm) +D(Txn, TFxn)]

≤ H({Txn}, TFxn) +H({Txm}, TGxm) + a1d(Txn, Txm)
+a2H({Txn}, TFxn) + a3H({Txm}, TGxm)
+a4[d(Txn, Txm) +H({Txm}, TGxm)]
+a5[d(Txn, Txm) +H({Txn}, TFxn)]

= (1 + a2 + a5)H({Txn}, TFxn)
+(1 + a3 + a4)H({Txm}, TGxm) + (a1 + a4 + a5)d(Txn, Txm).

Which implies that
(2.5)

d(Txn, Txm) ≤
(

1+a3+a4
1−a1−a4−a5

)
H({Txm}, TGxm) +

(
1+a2+a5

1−a1−a4−a5

)
H({Txn}, TFxn).

By taking the limit, from both side of the above inequality as m,n → ∞

lim
m,n→∞

d(Txn, Txm) = 0.

Thus {Txn} is a Cauchy sequence and so converges to y ∈ K. As T is closed graph
mapping, there exists x ∈ K such that Tx = y. Suppose that D(Tx, TFx) > 0 then
(2.6)

H({Txn}, TFx)−H({Txn}, TGxn) ≤ H(TFx, TGxn)
≤ a1d(Tx, Txn) + a2D(Tx, TFx)

+a3D(Tx, TFx) + a4D(Txn, TGxn)
+a5D(Txn, TFxn)

≤ a1d(Tx, Txn) + a2D(Tx, TFx)
+a3D(Txn, TGxn) + a4[d(Tx, Txn)
+D(Txn, TGxn)] + a5[d(Txn, Tx)
+D(Tx, TFx)]

≤ a1d(Tx, Txn) + a2D(Tx, TFx)
+a3D(Txn, TGxn)
+a4[d(Tx, Txn) +H({Txn}, TGxn)]
+a5[d(Txn, Tx) +D(Tx, TFx)].

Considering the limit of the above inequality, we get

(2.7) H({Tx}, TFx) ≤ (a2 + a5)D(Tx, TFx) < D(Tx, TFx),

that is a contradiction. Therefore, Tx ∈ TFx . As T is injective, so x ∈ Fx. Following
similar arguments for G, it is concluded that x ∈ Gx. Rewriting (2.6) and (2.7) for F
and G again one can conclude that H({Tx}, TFx) = 0 and H({Tx}, TGx) = 0, i.e.,
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Gx = Fx = {x}. Moreover, if z ∈ Fix(G,F )\{x} then

(2.8)

d(Tz, Tx) = D(Tz, TFx)
≤ H(TGz, TFx)
≤ a1d(Tz, Tx) + a2D(Tz, TFz)
+ a3D(Tx, TGx) + a4D(Tx, TGz) + a5D(Tz, TFx)
= a1d(Tz, Tx) + a4D(Tx, TGz) + a5d(Tz, Tx)

Therefore,

d(Tz, Tx) ≤ a4

1− a1 − a5
D(Tx, TGz) < D(Tx, TGz)

and this is a contradiction. Thus, Fix(F,G) = End(F,G). □

Corollary 2.6. Let X be a complete metric space, K be a closed subset of X, T : X →
X be an injective, closed graph map with T (K) ⊂ K. If f, g : K → X satisfy

(2.9)
d(Tfx, Tgy) ≤ a1d(Tx, Ty) + a2d(Tx, Tfx)

+a3d(Ty, Tgy) + a4d(Tx, Tgy)
+a5d(Ty, Tfx)

Then f and g have common approximate fixed point on K, if and only if f and g have the
unique common fixed point on K.

Proof. Take Fx = {fx}, Gx = {gx} and apply Theorem 2.5. □

Corollary 2.7. Let X be a complete metric space and K be a closed subset of X, and
T : X → X be an injective, closed graph map with T (K) ⊂ K. If f, g : K → X with
gf(K) ⊂ K, f(K) ⊂ K satisfy the following:

(a):

(2.10)
d(Tfx, Tgy) ≤ a1d(Tx, Ty) + a2d(Tx, Tfx)

+a3d(Ty, Tgy) + a4d(Tx, Tgy)
+a5d(Ty, Tfx)

(b): d(x, gx) ≤ d(x, fx) whenever x, y ∈ K.

Then f, g have the common approximate fixed point on K in a sense of Definition 2.2.

Proof. Let x0 ∈ K and let x1 = fx0 ∈ K. Also, x2 = gx1 = gfx0 ∈ K. So we can choose
a sequence {xn} ⊂ K such that {x2n} ⊂ K. We have x2n+2 = gx2n+1 and x2n+1 = fx2n,
for all n ∈ N. By replacing x by x2n and y by x2n+1 in (2.10) we have

d(Tx2n+1, Tx2n+2) = d(Tfx2n, T gx2n+1)
≤ a1d(Tx2n, Tx2n+1) + a2d(Tx2n, T fx2n)

+a3d(Tx2n+1, T gx2n+1) + a4d(Tx2n, T gx2n+1)
+a5d(Tx2n+1, T fx2n)

= a1d(Tx2n, Tx2n+1) + a2d(Tx2n, Tx2n+1)
+a3d(Tx2n+1, Tx2n+2) + a4d(Tx2n, Tx2n+2)
+a5d(Tx2n+1, Tx2n+1)

≤ (a1 + a2 + a4)d(Tx2n, Tx2n+1) + (a3 + a4)d(Tx2n+1, Tx2n+2).

that is,

(2.11) (1− a3 − a4)d(Tx2n+1, Tx2n+2) ≤ (a1 + a2 + a4)d(Tx2n, Tx2n+1)
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Again by replacing x = x2n+1 and y = x2n in (2.10) we have
d(Tx2n+2, Tx2n+1) = d(Tfx2n+1, T gx2n)

≤ a1d(Tx2n+1, Tx2n) + a2d(Tx2n+1, T fx2n+1)
+a3d(Tx2n, T gx2n) + a4d(Tx2n+1, T gx2n)
+a5d(Tx2n, T fx2n+1)

= a1d(Tx2n, Tx2n+1) + a2d(Tx2n+1, Tx2n+2)
+a3d(Tx2n, Tx2n+1) + a4d(Tx2n+1, Tx2n+1)
+a5d(Tx2n, Tx2n+2)

≤ (a1 + a3 + a5)d(Tx2n, Tx2n+1) + (a2 + a5)d(Tx2n+1, Tx2n+2).

that is
(2.12) (1− a2 − a5)d(Tx2n+1, Tx2n+2) ≤ (a1 + a4 + a5)d(Tx2n, Tx2n+1)

By adding (2.11) and (2.12), we have
(2− a2 − a3 − a4 − a5)d(Tx2n+1, Tx2n+2) ≤ (2a1 + a2 + a3 + a4 + a5)d(Tx2n, Tx2n+1)

that is
(2.13) d(Tx2n+1, Tx2n+2) ≤ δd(Tx2n, Tx2n+1)

where δ = 2a1+a2+a3+a4+a5
2−a2−a3−a4−a5

. Obviously δ < 1. Similarly, one can show that

(2.14) d(Tx2n+2, Tx2n+3) ≤ δd(Tx2n+1, Tx2n+2)

If we consider an = d(Tx2n, T fx2n) then (2.13) and (2.14) show that
(2.15) an+1 ≤ δan

and also bounded below by zero and so is convergent to r ≥ 0. If r > 0 then on taking
limit on both sides of (2.15) we have δ ≥ 1 and this is a contradiction. Thus r = 0. By
(B) we have {d(Tx2n, T gx2n)} is convergent to zero too. It means that, f, g have the
common T− approximate fixed point property on K. □

Corollary 2.8. Let X be a complete metric space and K be a closed subset of X.
Suppose that T : X → X be an injective, closed graph maps which T (K) ⊂ K,f, g : K → X

be two single-valued mappings such that gf(K) ⊂ K, f(K) ⊂ K and f, g satisfy the
following:

(A): For each x, y ∈ K

(2.16)
d(Tfx, Tgy) ≤ a1d(Tx, Ty) + a2d(Tx, Tfx)

+a3d(Ty, Tgy) + a4d(Tx, Tgy)
+a5d(Ty, Tfx)

(B): d(x, gx) ≤ d(x, fx).
Then f, g have the unique common fixed point on K.

Proof. Combining Corollary 2.7 and 2.6, the result follows. □

Corollary 2.9. Let X be a complete metric space, K a closed subset of X. If f, g :
K → X satisfy

d(fx, gy) ≤ a1d(x, y) + a2d(x, fx) + a3d(y, gy) + a4d(x, gy) + a5d(y, fx),

where ai ≥ 0, i = 1, 2, ..., 5 with
∑5

i=1 ai < 1. Then f and g have I−common approximate
fixed point on K if and only if f and g have the unique fixed point on K, where I is an
identity map.

Proof. Taking T = I(identity map)in Corollary 2.6 one can conclude desired result. □
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3. Some Examples

In this section we give some examples to support our main results.

Example 3.1. Let X = {0, 1, 2} and d(x, y) = |x− y| for all x, y ∈ X. Let T : X → X
be defined by

Tx =


1, if x ̸= 2

0 if x = 2

and F,G : X → Pcl, bd(X) be defined by

Fx =


{0, 1}, if x = 0

{1}, if x = 1

{0} if x = 2

and Gx =


{0}, if x = 0

{1}, if x = 1

{0, 1} if x = 2

Since
TF0 = TF1 = TF2 = TG0 = TG1 = TG2 = 1.

This implies
H(TFx, TGy) = 0

for all x, y ∈ X. Hence
H(TFx, TGy) ≤ a1d(Tx, Ty) + a2D(Tx, TFx) + a3D(Ty, TGy)

+a4D(Tx, TGy) + a5D(Ty, TFx)

is satisfied for all x, y ∈ X. So (F,G) of multi-valued mappings is T− Hardy − Rogers
pair on X. Moreover if K = {0, 1}, then for the sequences {xn} ⊆ K where xn = 0 and
xn = 1 such that

lim
n→∞

H({Txn}, {TFxn}) = 0 and lim
n→∞

H({Txn}, {TGxn}) = 0.

Hence (F,G) have the common T− approximate strict fixed point property on the bound-
ary of K.

Now we give an example to illustrate Theorem 2.5.

Example 3.2. Let X = { 1
2
, 1
3
, 1
4
, 1
5
} and d(x, y) = |x− y| for all x, y ∈ X. Obviously

X is a complete metric space. Let T : X → X be defined by

Tx =


1
3
, if x = 1

2
1
2
, if x = 1

3
1
5
, if x = 1

4
1
4

if x = 1
5

Clearly T is injective and a closed graph mapping. Let K = { 1
2
, 1
3
} = K be a closed

subset of X and F,G : K → Pcl, bd(X) be defined by

Fx =


1
2
, if x = 1

2

{ 1
4
, 1
5
} if x = 1

3

and Gx =


1
2
, if x = 1

2

{ 1
2
, 1
4
} if x = 1

3

Let x = 1
2
, and y = 1

3
then

H(TF 1
2
, TG 1

3
) = H(T 1

2
, T{ 1

2
, 1
4
}) = H({ 1

3
}, { 1

3
, 1
5
}) = 2

15
.

On the other hand d(T 1
2
, T 1

3
) = d( 1

3
, 1
2
) = 1

6
. Let a1 = 6

7
, and a2 = a3 = a4 = a5 = 0

then clearly 2
15

< 6
7

1
6
= 1

7
, hence

H(TF 1
2
, TG 1

3
) ≤ a1d(T

1
2
, T 1

3
) + a2D(T 1

2
, TF 1

2
) + a3D(T 1

3
, TG 1

3
)

+a4D(T 1
2
, TG 1

3
) + a5D(T 1

3
, TF 1

2
).
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Now let x = 1
3
, and y = 1

2
then

H(TF 1
3
, TG 1

2
) = H(T{ 1

4
, 1
5
}, T 1

2
}) = H({ 1

4
, 1
5
}, { 1

3
}) = 2

15
.

On the other hand d(T 1
3
, T 1

2
) = d( 1

2
, 1
3
) = 1

6
. Let a1 = 6

7
, and a2 = a3 = a4 = a5 = 0

then clearly 2
15

< 6
7

1
6
= 1

7
, hence

H(TF 1
3
, TG 1

2
) ≤ a1d(T

1
3
, T 1

2
) + a2D(T 1

3
, TF 1

3
) + a3D(T 1

2
, TG 1

2
)

+a4D(T 1
3
, TG 1

2
) + a5D(T 1

2
, TF 1

3
).

So (F,G) is a T− Hardy−Rogers pair on K. Hence (F,G) have the common T− approx-
imate strict fixed point property on the boundary of K. All the conditions of Theorem 2.5
are satisfied. Moreover { 1

2
} = G 1

2
= F 1

2
.

Example 3.3. Let X = [0, 1] and d(x, y) = |x− y| for all x, y ∈ X. Obviously X is a
complete metric space. Let T : X → X be defined by

Tx =


3
4
x, if x ̸= 1

1 if x = 1

T is injective and closed graph mapping. Let K = {0, 1} = K be a closed subset of X
and F,G : K → Pcl, bd(X) be defined by

Fx =


0, if x = 0

[0, 1
2
] if x = 1

and Gx =


0, if x = 0

[0, 1
3
] if x = 1

Let x = 0, and y = 1 then

H(TF0, TG1) = H(T0, T [0,
1

3
]) = H({0}, [0, 1

4
]) = 1

4
.

On the other hand d(T0, T1) = d(0, 1) = 1. Let a1 = 1
2
, and a2 = a3 = a4 = a5 = 0 then

clearly 1
4
< 1

2
, hence

H(TF0, TG1) ≤ a1d(T0, T1) + a2D(T0, TF0) + a3D(T1, TG1)

+a4D(T0, TG1) + a5D(T1, TF0).

Now let x = 1, and y = 0 then

H(TF1, TG0) = H(T [0,
1

2
], T0}) = H([0,

3

8
], {0}) = 3

8
.

On the other hand d(T1, T0) = d(1, 0) = 1. Let a1 = 2
3
, and a2 = a3 = a4 = a5 = 0 then

clearly 3
8
< 2

3
, hence

H(TF1, TG0) ≤ a1d(T1, T0) + a2D(T1, TF1) + a3D(T0, TG0)

+a4D(T1, TG0) + a5D(T0, TF1).

So (F,G) is a T−Hardy−Rogers pair on K. Hence (F,G) have the common T−approximate strict
fixed point property on the boundary of K . All the conditions of Theorem 2.5 are satisfied.
Moreover 1

2
is the unique common strict fixed point of the pair (F,G).

4. Applications

In the following we give three applications to support our results:

(I) : Solve an integral equations system.
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Theorem 4.1. Let X = C[0, 1] and let
K = {x ∈ C[0, 1] : x(−t) = x(t) for all t ∈ [0, 1]}.

Consider the following problem:
Problem (A):{
x(t) = c0 +

∫ t
0 f1(s, x(s))p1(s) ds−

∫ t
0 f2(s, x(s))p2(s) ds , x(0) = 0,

y(t) = c0 +
∫ t
0 g1(s, y(s))p1(s) ds−

∫ t
0 g2(s, y(s))p2(s) ds. , y(0) = 0

where for each s ∈ [0, 1], c0 > 0 and x, y ∈ K

(1). f2(s, x(s)) ≥ f1(s, x(s)) ≥ gi(s, x(s)),
(2). fi(−s,−x(s)) = −fi(s, x(s)),
(3). gi(−s,−y(s)) = −gi(s, y(s)),
(4). |f1(s, x(s))− g1(s, y(s))| ≤ ||x− y||∞,
(5). |f2(s, x(s))− g2(s, y(s))| ≤ |x(s)− c0|.

Suppose that
p1(t) = ln(1+

√
17

4 )Cosh(ln(1+
√
17

4 )t),

p2(t) = ln(1+
√
26

5 )Cosh(ln(1+
√
26

5 )t).

Then, Problem (A) has a unique solution in K.

Proof. Define
F (x(t)) = c0 +

∫ t
0 f1(s, x(s))p1(s) ds−

∫ t
0 f2(s, x(s))p2(s) ds, x(0) = 0,

&

G(y(t)) = c0 +
∫ t
0 g1(s, y(s))p1(s) ds−

∫ t
0 g2(s, y(s))p2(s) ds, y(0) = 0

where x, y ∈ K and T (x) = x. One can easily verified that F (K) ⊆ K and G(F (K)) ⊆ K.
Also, ∫ 1

0 p1(t) dt =
1
4 ,∫ 1

0 p2(t) dt =
1
5 .

Moreover,

|TF (x(t))− TG(y(t))| ≤
∫ t
0 |f1(s, x(s))− g1(s, y(s))||p1(s)| ds

+
∫ t
0 |f2(s, x(s))− g2(s, y(s))||p2(s)| ds

≤ 1
4 ||x− y||∞ + 1

5 ||x− F (x)||∞
≤ a1||Tx− Ty||∞ + a2||Tx− TFx||∞
+ a3||Ty − TGy||∞ + a4||Tx− TGy||∞
+ a5||Ty − TFx||∞

Taking a1 = 1
4
, a2 = 1

5
and a3 = a4 = a5 = 0 in Corollary 2.8 one can find a unique

common fixed point in K which is the unique solution for Problem (A). □
(II) : Existence and uniqueness of common solution of system of equa-

tions arising in dynamic programming.
In this section, we assume that U and V are Banach spaces, W ⊆ U and D ⊆ V. Suppose
that

τ : W ×D −→ W

g : W ×D −→ R
G,F : W ×D × R −→ R.
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Considering W and D as the state and decision spaces respectively, the problem of dynamic
programming reduces to the problem of solving the functional equations:

p(x) = sup
y∈D

{g(x, y) +G(x, y, p(τ(x, y)))}, for x ∈ W(4.1)

q(x) = sup
y∈D

{g(x, y) + F (x, y, q(τ(x, y)))}, for x ∈ W.(4.2)

For more on multistage process involving such functional equations, we refer to ([13, 3,
5, 4, 9, 25]). Now we study the existence and uniqueness of the common and bounded
solution of the functional equations (4.1)-(4.2) arising in dynamic programming in the
setup of metric spaces.

Let B(W ) denotes the closed subspace of C(W ), the set of all bounded real valued func-
tions on W . For an arbitrary h ∈ B(W ), define ∥h∥ = supx∈W |h(x)| . Then (B(W ), ∥·∥)
is a Banach space endowed with the metric d defined as d(h, k) = sup

x∈W
|hx− kx| . Now

consider
(4.3) d(h, k) = sup

x∈W
|hx− kx| ,

where h, k ∈ B(W ), and d is a complete metric on B(W ). Suppose that the following
conditions hold:
(C1) : G,F and g are bounded.
(C2) : For x ∈ W , h ∈ B(W ), define

Kh(x) = supy∈D{g(x, y) +G(x, y, h(τ(x, y)))},(4.4)
Jh(x) = supy∈D{g(x, y) + F (x, y, h(τ(x, y)))}.(4.5)

Moreover assume that for every (x, y) ∈ W ×D,h, k ∈ B(W ) and t ∈ W

(4.6) |G(x, y, h(t))− F (x, y, k(t))| ≤ M((h(t), k(t))

where
M((h(t), k(t)) = a1d(h(t), k(t)) + a2d(h(t),Kh(t)) + a3d(k(t), Jh(t))

+a4d(h(t), Jk(t)) + a5d(k(t),Kh(t)),

where ai ≥ 0, i = 1, 2, ..., 5 with
∑5

i=1 ai < 1.
(C3) : There exists a sequence of functions {hn} ⊆ B(W ) (boundary of B(K)) such that

lim
n→∞

d(hn,Khn) = lim
n→∞

d(hn, Jhn) = 0.

Theorem 4.2. Assume that the conditions (C1)− (C3) are satisfied, then the functional
equations (4.1) and (4.2) have a unique, common and bounded solution.

Proof. Note that (B(W ), d) is a complete metric space. By (C1), J,K : B(W ) → C(W ).
The condition (C3) implies that J and K have I−approximate fixed point in the B(W ).
Let λ be an arbitrary positive number and h1, h2 ∈ B(W ). Choose x ∈ W and y1, y2 ∈ D
such that

Khj < g(x, yj) +G(x, yj , hj(xj) + λ,(4.7)
Jhj < g(x, yj) + F (x, yj , hj(xj) + λ,(4.8)

where xj = τ(x, yj), j = 1, 2. By (4.4) and (4.5), it follows that
Kh1 ≥ g(x, y2) +G(x, y2, h1(x2))(4.9)
Jh2 ≥ g(x, y1) + F (x, y1, h2(x1)).(4.10)

Now (4.7) and (4.10) imply that

(4.11)
Kh1(x)− Jh2(x) < G(x, y1, h1(x1))− F (x, y1, h2(x2)) + λ

≤ |G(x, y1, h1(x1))− F (x, y1, h2(x2))|+ λ
≤ M((h(t), k(t)) + λ.



10 F. KHOJASTEH AND MUJAHID ABBAS

From (4.7) and (4.8), we have

Jh2(x)−Kh1(x) ≤ F (x, y1, h2(x2))−G(x, y1, h1(x1))
≤ |G(x, y1, h1(x1))− F (x, y1, h2(x2))|
≤ M((h(t), k(t)).

Using (4.11) and (4.12), we have

(4.12) |Kh1(x)− Jh2(x)| ≤ M((h(t), k(t)).

As above inequality is true for any x ∈ W , and λ > 0 is taken arbitrary so we obtain

(4.13) d(Kh1, Jh2) ≤ M((h(t), k(t)).

Therefore by Corollary (B), the pair (K,J) has a unique common fixed point h∗, that is,
h∗(x) is unique, bounded and common solution of (4.1) and (4.2). □

(III) : Existence and uniqueness of common solution of system of integral
equations.

Now we discuss the application of fixed point theorems we proved in the previous section
in solving the system of Volterra type integral equations. Such system is given by the
following equations.

u(t) =

t∫
0

K1(t, s, u(s))ds+ g(t),(4.14)

w(t) =

t∫
0

K2(t, s, w(s))ds+ g(t).(4.15)

for t ∈ [0, a], where a > 0. We find the solution of the system (4.14) and (4.15). Let
C1([0, a],R) be the closed subspace of C([0, a],R) all continuous functions defined on [0, a].
For u ∈ C1([0, a],R) define supremum norm as:

∥u∥τ = sup
t∈[0,a]

{|u(t)| e−τt}

where τ > 0 is taken arbitrary. Let C1([0, a],R) be endowed with the metric

(3.17) dτ (u, v) = sup
t∈[0,a]

∥u(t)− v(t)∥τ

for all u, v ∈ C1([0, a],R). With these setting C1([0, a],R, ∥ · ∥τ ) becomes Banach space.
Now we prove the theorem to ensure the existence of solution of system of integral

equations. For more information on such applications we refer the reader to [1, 24].

Theorem 4.3. Suppose that (i) K1,K2 : [0, a] × [0, a] × R → R and g : [0, a] → R are
continuous;

(ii) Define

Tu(t) =

t∫
0

K1(t, s, u(s))ds+ g(t),

Su(t) =

t∫
0

K2(t, s, u(s))ds+ g(t).

If there exists a τ ≥ 1 such that

∥K1(t, s, u)−K2(t, s, v)∥τ ≤ τM(u, v)
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for all t, s ∈ [0, a] and u, v ∈ C1([0, a],R), where
M(u, v) = a1∥u(t)− v(t)∥τ + a2∥u(t)− Tu(t)∥τ

+ a3∥v(t)− Sv(t)∥τ + a4∥u(t)− Tv(t)∥τ
+ a5∥v(t)− Su(t)∥τ}.

(iii) there exists a sequence {un} ⊆ C1([0, a],R) such that lim
n→∞

|un(t)− Tun(t)| =

lim
n→∞

|un(t)− Sun(t)| = 0. Then the system of integral equations given in (4.14) and
(4.15) has a solution.

Proof. By assumption (iii) it follows that S and T have I−approximate fixed point in
the C1([0, a],R).

|Tu(t)− Sv(t)| =

t∫
0

|K1(t, s, u(s)−K2(t, s, v(s)))| ds

=

t∫
0

|K1(t, s, u(s)−K2(t, s, v(s)))| e−τseτsds

≤
t∫

0

∥K1(t, s, u)−K2(t, s, v)∥τeτsds

≤
t∫

0

τM(u, v)eτsds ≤ τM(u, v)

t∫
0

eτsds

≤ τM(u, v)
eτt

τ
.

This implies
|Tu(t)− Sv(t)| e−τt ≤ M(u, v),

That is
∥Tu(t)− Tv(t)∥τ ≤ M(u, v)

So all the conditions of Corollary 2.8 are satisfied. Hence the system of integral equations
given in (4.14) and (4.15) has a unique common solution. □
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